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1. INTRODUCTION

Any study of best uniform approximation of real continuous functions
on [-1, +1] by polynomials contains much about Chebyshev polynomials
and their numerously elegant properties and characterizations. And new
properties and characterizations of Chebyshev polynomials continue to
fascinate us (cf. DeVore [1], and Micchelli and Rivlin [4]). In this spirit, we
present: another property of Chebyshev polynomials which, though elemen
tary, has not to our knowledge been mentioned previously in the literature.

To motivate our theoretical discussion, suppose we wish to find the best
polynomial approximation Pn(x; r), of fixed degree n, to f(x) := eX in the
uniform norm on [0, r], where r is a large positive number. Equivalently,
by mapping to the interval [-1, +1], we seek the best uniform polynomial
approximation Pn(t; r) of degree n to the normalized function

g(t; r) := 2/ 1; (t + I)l!f(r), t E [-1, +1],

where Pn(t; r) and Pn(x; r) are obviously related through

(
2X-r)fer) Pn -r-; r = 2Pn(x; r), (r(t + 1)/2 = x).

(1.1)

(1.2)
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(1.3)

Because of inherent monotonicity properties of eX, it is not difficult to verify
that the unique linear polynomial Pl(t; 1') of best uniform approximation
to g(t; 1') on [-1, +I] is explicitly given for any I' > 0 by

[ (
I - e- r ' \ ..,.' I]

Pl(t;,.) = e- r + ---,.--)/1 -+ In h----=e::-:r), --- (I - e') . I,

so that as I' ---+ + 00, Ih(/; 1') tends uniformly on [--1, + I] to the Chebyshev
polynomial T1(t) = t, i.e., for the case n = I,

(1.4)

As we shall show (cf. (3.6) of Theorem 3), (1.4) similarly holds for any
fixed nonnegative integer n, in part because the continuous functions get; 1')
tend pointwise on [-1, + 1], as r ---+ + 00, to the discontinuous function

fo(t) := l~:-l I'-~ ;~ 1, (1.5)

With 7Tn denoting the set of all real polynomials of degree at most n, it is
readily seen (cf. Lemma I) that there is no unique best uniform approximation
to fo in 7T n over [-1, +1], but the set of best approximations to fo in 7Tn does
contain Tn' the nth Chebyshev polynomial (of the first kind), for every n .?: O.

To state our main result for sequences of continuous functions on
[-1, +1], we give some needed notation. For brevity, we write II . '1[_1,+1]
for II . IIL

ro
[-1.+1] • Next, given a sequence {fle};7~1 of continuous functions on

[-1, +1], let Pn.1e E 7Tn be the unique best uniform approximation to fie
on [-1, +1] in 7Tn ,i.e.,

EnCj;J :== inf Ilj~ - P 1![-1.+1] = fie - PrI.lc '1[_1,+1] Vk .?: I, Vn O. (1.6)
PE1Tn

It is well known that there exist n + 2 distinct points of alternation in
[-1, +1] for Pn,k - fk , and by discarding at most one of these points on
the extreme right, n + I consecutive alternation points x;n,k) can be found
such that

I,

( oO) (n,k)) r ( (n,l,)) - ( l)j E (/') 0 -~ . ...-'11 Pn,k X j - J Ie Xj - - ~n . Ie, ~ J ~ 11.

(1.7)

With this notation, and with the functionfo of (1.5), we then state

THEOREM 1. Let {fle};;'~l be any sequence of continuous functions on
[-1, +1] such that (cf. (1.5))

k
lim Ilfle - fo 11[-l,t] = 0 Vt E [-I, +1),

->ro

lim j~(I) = 2,
k->ro

E~ Ilfk - 1 1\[-1,+11 = I,

(1.8)

(1.9)

(1.10)
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and (cl (1.7))

Then,

lim sup x~n.k) < 1
k->ro

\In ~O. (1.11)

lim II Pn k - Tn 11[-1.+1] = 0
k-HX) •

\In ~ O. (1.12)

We remark that (1.8) and (1.9) imply of course the pointwise convergence
of {fk}~~l to 10 in [-1, +1].

Because the assumption of (1.11) is a priori difficult to verify, a stronger
but more convenient hypothesis, (1.13), can be made, which, with (1.8)
and (1.9), imply both (1.10) and (1.11). This results in

THEOREM 2. Let {fk}~l be any sequence of continuous functions on
[-1, +1] such that (I.8) and (1.9) are both satisfied. In addition, assume:

1
there is an a with - 1 :( a < 1 such that fk is nondecreasing !

(1.13)
on [a, 1] \lk ~ 1.

Then, the conclusion (1.12) is valid.

2. PROOF OF MAIN RESULTS

To prove Theorems 1 and 2, we establish a number of lemmas. First,
with the definition of10 in (1.5), it is immediate that, for any Pn E71"n and
any n ~ 0,

1110 - Pn 11[-1,+1] ~ max{12 - Pn(1)I; IPn(l)l} ~ 1,

from which the next result easily follows.

LEMMA 1. En(fo) = 1 for all n ~ 0, and qn E 71"n is a best approximation
tofo in 71"n (over [-1, +1]) iff II qnll[-l.+1] = 1 and qn(l) = 1. In particular,
each Chebyshev polynomial Tn' n ~ 0, is a best approximation to fo in 71"n .

LEMMA 2. If qn is a nonconstant best approximation to 10 in 71"n and if
Ifo - qn I takes on the value En(fo) in n distinct points in [-1, + I), then
qn = Tn.

Proof By hypothesis, there exist n distinct points {Xj}f~l in [-1, + 1)
l(fo - qn)(Xj)! = En(fo) = 1, i.e., I qn(Xj) I = 1 for 1:( j :( n. From
Lemma 1, I qn(I) I = 1 and also II qn 11[-1,+1] = 1. Thus, I qn I assumes its
maximum of unity on [-1, + I] in n + 1 distinct points, from which, using
a result of RivIin [6, p. 73], it follows that either qn is a constant, which
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contradicts the hypothesis, or qn ± Tn. Since qn(l) 1 from Lemma I,
then only qn == Tn is possible. I

LEMMA 3. Let {fk}~~1 be a sequence of continuous functions on [- I, 1}
satisfying (1.8)-(1.10). Then (cf (1.6)-(1.7», for each n ;:;::; 0, there is a sub
sequence {Pn,s,);;'~1 of{Pn,Ie];;'~1 in 7Tn , a qnE7Tn, and n points -I ,Vn :'(

,vn - 1 :'( ,., :(~ i\ :'( 1 for which

and

I , .(n.li) '1 .-- ' ~1m X j = Xj, ~.1 ~ n.
k----'> '-c

Moreover, qn is a best approximation to fo in 7Tn •

Proof By definition, it follows that

(2.1)

(2.2)

\In;:;::; 0, \lk ;:;::; 1. (2.3)

When coupled with the hypothesis of (1.10), this implies that

(2.4)

Then, because Pn,1e - fie 1[-1,+1] = En(he> from (1.6), it follows from the
hypothesis (1.10) and (2.3) that {Pn.k};;'~1 is a bounded subset of 7Tn . Thus,
by the Bolzano-Weierstrass Theorem, there exist a subsequence {Pn, s,);;'~1

and a qn E7Tn such that (2.1) and (2.2) are satisfied. To show that qn is a best
approximation to 10 in 7Tn , we first see from the triangle inequality that,
for any fixed t with -I :'( t < I,

The first term on the right tends to zero as k ---+ 00 because of (2.1), the last
term tending to zero because of (1.8). The second term on the right is bounded
above by EnUs) , so that with (2.3) and (1.10), then 1 qn(t)1 :'( 1. But as t
was arbitrary in [-1, +1), then II qn 11[-1,+1] :'( 1. Next, we have that

so that from (2.3),

IPn'Sk(1) - fsJ1)1 :'( Ilfs, - 1 11[-1,+1] •

Thus, from (2.1), (1.9), and (1.10), it follows that I qn(l) - 2 I :'( 1, whence
qn(1) ?: 1. But as II qn 11[-1.+1] :'( 1, then qn(1) = 1 and II qn 11[-1.+1] = 1, whence,
from Lemma 1, qn is a best approximation tofo in 7Tn · I
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LEMMA 4. Let {fk}~~l be a sequence of continuous functions on [-1, +1]
satisfying (1.8)-(1.10). Then,

(2.5)

Proof. Clearly, from (2.3) and (1.6),

IPn.sk(I) - j~k(I)1 ~ En(f'k) ~ !If'k - 11:[-1.+1] .

Then, sincepn.sk(I) tends to qn(1) = 1 from (2.I)'/8
k
(1) tends to 2 from (1.9),

and Ilf'k - 1 1:[-1.+1] tends to unity from (1.10), it follows that

lim En(f'k) = I.
k--)x

(2.6)

If Iimk_.", EnCfk) =Ie 1, there is a subsequence {fr.}~~l of {j;'}~~l for which,
with (2.4), limk _", EnCfr) = ex < 1. But then, by what has been established,
{fr.}~~l will have a subsequence satisfying (2.6), a contradiction. I

LEMMA 5. Let {fk}~~l be a sequence of continuous functions on [-1, -,I]
satisfying (1.8)-(1.11). Then (cf (1.7) and (2.1)),

Consequently (cf (2.2)),

(2.7)

1 ~ j .S; n, (2.8)

and the x/s are distinct with -1 ~ xn < xn - 1 < ... < Xl < 1.

Proof From (1.7(ii)), we have that

Pn. ".(x;n. Sk») = f,.(x;n. Sk)) + (-1); En(f'k)' 1 ~ j S; 11. (2.9)

With the hypothesis of (1.11), there is a T with T < 1 such that xd n
,sk ) ~ T < 1

for all 1 ~ j :s:; n, all k ;;:;;: 1. Thus, on applying the hypothesis of (1.8),
the first term on the right of (2.9) necessarily tends to zero as k ---+ 00, while
the second term tends to (-1); from Lemma 4, proving (2.7). Next, (2.8)
follows directly from (2.7) and (2.1)-(2.2) of Lemma 3, which then provides
the distinctness of the x/s in [-1, + I). I

Proof of Theorem 1. As a consequence of Lemma 5, we can apply
Lemma 2 to deduce that qn = Tn for each n ;;:;;: O. Hence, (2.1) becomes

lim I! Pn,sk - Tn 11[-1,+1] = O.
k-)(JJ
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It remains to show that (1.12) is actually valid. Suppose, on the contrary,
that (1.12) fails to be true for some n :? O. Then, there is subsequence
{rk};:~l and an € > 0 for which

v/( I. (2.10)

But, by the proof of Lemma 3, there is a subsequence {rk}j~l of {rk}~l and .
a ifn E 7Tn such that limi+D II Pn,rk - ifn 11[-1,+1] = 0 where: as in Lemma 3,
ifn is a best approximation of fo : But the proofs of the subsequent lemmas
similarly hold, so that by the same reasoning, ifn = Tn' which contradicts
(2.10). I

To prove Theorem 2, it suffices from Theorem 1 to simply establish

LEMMA 6. Let {fk}~~l be a sequence of continuous functions on [-1, +1]
satisfying (1.8), (1.9), and (1.13). Then, (1.10) and (1.11) are satisfied.

Proof It is easy to verify that (1.8), (1.9), and (1.13) together imply
(1.10). Next, setting a:= lim SUPIe~oo xin,Ie), we wish to show first (cf. (1.11)
that a < 1. Letting {kJ;:l be any subsequence for which a = limi~co xin,k;) ,
we may assume that xin,Ie;) ex of (1.13) for all j :? 1, for otherwise, (1.11)
is trivially true. From (1.7)(i), we have that ex ~ xin,k;) < x~n,Ie,) ~ 1.
Hence, on subtracting the cases j = 0 and j = 1 in (1.7)(ii),

Pn,!)x~n,!,) - Pn,lej(Xin,k) =c (f(x~n.k) ~- !(Xin,k;)_- 2Eifk)

2EnUk;) Vi:? 1, (2.11)

since fk is by hypothesis (1.13) nondecreasing on [lx,I]. Consequently,
(2.11) c~n be expressed as

Vj:? 1, (2.12)

for some gin,k;) E [-I, +1]. Then, since I - xin,k j) ==~ X~n,kj) - xin,Ie;) > 0,
(2.12) implies that

Vj:? I. (2.13)

Next, as in the proof of Lemma 3, the boundedness of {Pn.k
j
};:l implies

that there is an M > 0 for which

II Pn,k j 11[-1,+1] cS:; M Vj:? I,

so that by Markoff's inequality (cf. Meinardus [3])

II P~,kj 11[-1,11] ~ Mn 2 Vj:? 1.



CHEBYSHEV POLYNOMIALS 239

Inserting this in (2.13) then yields

(1 _ (n.k;» >- 2En(fk;)
Xl ?' Mn2 V} ;? 1. (2.14)

But as Lemma 4 implies that limk~<X) En(fk) = 1, this gives that

1 - a ;? 2/Mn2
,

or

1 > 1 - _2_ ;? a := lim sup Xln,k),
Mn2 k-'o<X) 1

i.e., (Lll) is satisfied. I

3. ApPLICATIONS AND ADDITIONAL REMARKS

First, though the hypotheses of Theorem 1 may seem lengthy, it is
interesting to point out that if anyone of the four hypotheses of (1.8)-(1.11)
is dropped, a counterexample to the conclusion (1.12) of Theorem 1 can be
constructed.

Our original motivation for this problem came from investigations of
best polynomial approximation to continuous functions defined on [0, + (0).
To close the cycle and apply the result of Theorem 2, let C+[O, + (0) denote
the subset of all real continuous functions f(x) on [0, + (0) for which there
exists a real number T(f) ;? °such that f(x) is positive and nondecreasing
for all X ;? T(f). Next, for any f E C+[O, + (0), define its associated non
negative and nondecreasing function mf(r) by

mtCr):= max If(x)] = llfll[o.r]
O~x~r

Vr ;? 0. (3.1)

Note that f E C+[O, + (0) implies that mf E C+[O, + (0). With this notation,
we say that f E C+[O, + (0) is order positive on [0, + (0) if, for each fixed
y satisfying °~ y < 1,

(3.2)

As is easily seen,j(x) = eX and hex) = eX - lOex /2 sin X are order positive
on [0, + (0). In addition, any entire function of positive order and of perfectly
regular growth (cf. Valiron [7, p. 45]), having only nonnegative Maclaurin
coefficients, is necessarily order positive on [0, + (0). Note, however, that
no polynomial can have this property.

Next, if f is order positive on [0, + (0), it follows from (3.2) that mf'
and hence f, is unbounded on [0, + (0). Consequently, on setting

Wl f := {r ;? 0: mtCr) = fer)}, (3.3)
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then 9Jl f is an unbounded subset of [0, -+- 00) which contains ali r sufficiently
large. This brings us to the following construction. Assuming f is order
positive on [0, +- 00), then, with the functions get; r) of (1.1), set

where {rk}~~1 is any fixed subset of 9Jlf satisfying

"', with lim r/:" +00.
k<t:;

(3.5)

Because f is order positive, it is easily seen that { gk}:~1 is a sequence of con
tinuous functions on [-l, -+-1] satisfying (1.8) and (1.9), and that gk is
positive and nondecreasing on [-1 +- 27(f)/rk , I], so that (1.13) is satisfied
with ex c= 27(j)/r1. Hence, Theorem 2 can be applied, but as this application
can be made for every subset {r7'};~)~1 of 9Jlk satisfying (3.5), we also then have

THEOREM 3. If f is order positive [0, + 00), let the functions get; r),
r 7(j), be defined as in (1.1), and let Pn(', r) be the unique best approximation
in 7Tn to g(.; r) on [-I, +1]. Then,

lim Pn(-; r)
r~w

Vn .? O. (3.6)

Iff is order positive on [0, + 00), then it follows from (3.6) of Theorem 3
and known properties of Chebyshev polynomials that Pn(-; r), the unique
best uniform approximation in 7T" to g(.; r) on [--1, +1], is evidently positive
and strictly increasing on [1,+ 00) for every n .? I, provided that r is suffi
ciently large. But since p,,(x; r), the unique best uniform approximation in
7T n to lex) on [0, r], is related to p,,(t; r) through

f( ) I2x - r ..1 --- 2 - (,..). r p" i--r-' 1\-- Pn X, I ,

then, as a consequence of Theorem 3, we have

ret + 1)/2 _Y. (3.7)

COROLLARY 1. Iff is order positive on [0, +- (0), then for each positive
integer n, there is an s = sen) .? 7(j), such that Pn(-; r), the unique best
uniform approximation in 7Tn to f on [0, r], is positive and strictly increasing
on [r, + oo)for all r .? s.

We remark that sufficient conditions on f to insure increasing and non
negative polynomial approximations on the right of the interval of approxi
mation have similarly been considered in [2].
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Finally, the functionfo of (1.5) has the property (cf. Lemma 1) that

and
(i)

(ii) U - Tn 11[-1.+1] = 1

"In ~ 0,

"In ~ 0,
(3.8)

and this was key in our development. However, fo is not the only function
on [--1, + 1] satisfying (3.8). For example, changing the definition in the
fo in the point x = -t so that f( -t) = t, gives a new function also satis
fying (3.8). It is then of interest to exactly characterize those functions f
defined on [-1, + 1] for which (3.8) is valid, for this allows an obvious
parallel derivation of results analogous to Theorems 1 and 2. To sketch
this characterization, note that (3.8)(ii) implies that

--1 + Tn(x) ~ f(x) ~ 1 + Tn(x), "Ix E [-1, +1], "In ~ 0,

whence

-1 + sup {Tn(x)} := L(x) ~f(x) ~ U(x):= 1 + inf {Tn(x)} "Ix E [-1, +1].
n~O n~O (3.9)

Since -1 ~ Tn(x) ~ 1 for all x E [-1, +1] and all n ~ °while To(x) := 1,
it follows that L(x) := °and °~ U(x) ~ 2, so that

°~f(x) ~ U(x) ~ 2 VXE[-l, +1]. (3.10)

Next, it is known (cf. P61ya-Szego [5, vol. 1, p. 71]) that if s is irrational,
then the sequence {ns - [[ns]]}:~o is uniformly distributed in [0, 1] where
[[ns]] denotes the integer part of ns. This implies that U(x) = °for any
x = cos B for which B/7T is irrational, and thus, from (3.10), f(x) = °in such
points. In a similar fashion, one then establishes

PROPOSITION 1. For f defined on [-1, +1] to satisfy (3.8), it is necessary
and sufficient that

(i) f(l) = 2;

(3.11 )

°~f(x) ~ 1 - cos (2m 7T+ 1) for any x = cos B with BE [0,7T]

for which B = ( 2~r~ 1 ) .

(ii) f(x) = °for any x = cos () with BE [0, 7T]for which B/7T is irrational;

f(x) = 0for any x = cos B with BE [0, 7T] {or which B = m , with r. m
and m in lowest terms and r odd;

(iv)

(iii)
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